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Abstract

The Kuramoto model describes a large population of coupled limit-cycle oscillators whose natural frequencies are drawn
from some prescribed distribution. If the coupling strength exceeds a certain threshold, the system exhibits a phase transition:
some of the oscillators spontaneously synchronize, while others remain incoherent. The mathematical analysis of this bifur-
cation has proved both problematic and fascinating. We review 25 years of research on the Kuramoto model, highlighting
the false turns as well as the successes, but mainly following the trail leading from Kuramoto’s work to Crawford’s recent
contributions. It is a lovely winding road, with excursions through mathematical biology, statistical physics, kinetic theory,
bifurcation theory, and plasma physics. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the 1990s, Crawford wrote a series of papers about the Kuramoto model of coupled oscillators [1–3]. At first
glance, the papers look technical, maybe even a bit intimidating.

For instance, take a look at “Amplitude expansions for instabilities in populations of globally coupled oscillators”,
his first paper on the subject [1]. Here, Crawford racks up 200 numbered equations as he calmly plows through a
center manifold calculation for a nonlinear partial integro-differential equation.

Technical, yes, but a technical tour de force. Beneath the surface, there is a lot at stake. In his modest, methodical
way, Crawford illuminated some problems that had appeared murky for about two decades.

My goal here is to set Crawford’s work in context and to give a sense of what he accomplished. The larger setting
is the story of the Kuramoto model [4–9]. It is an ongoing tale full of twists and turns, starting with Kuramoto’s
ingenious analysis in 1975 (which raised more questions than it answered) and culminating with Crawford’s in-
sights. Along the way, I will point out some problems that remain unsolved to this day, and tell a few stories
about the various people who have worked on the Kuramoto model, including how Crawford himself got hooked
on it.
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2. Background

The Kuramoto model was originally motivated by the phenomenon of collective synchronization, in which an
enormous system of oscillators spontaneously locks to a common frequency, despite the inevitable differences in the
natural frequencies of the individual oscillators [10–13]. Biological examples include networks of pacemaker cells in
the heart [14,15]; circadian pacemaker cells in the suprachiasmatic nucleus of the brain (where the individual cellular
frequencies have recently been measured for the first time [16]); metabolic synchrony in yeast cell suspensions
[17,18]; congregations of synchronously flashing fireflies [19,20]; and crickets that chirp in unison [21]. There are
also many examples in physics and engineering, from arrays of lasers [22,23] and microwave oscillators [24] to
superconducting Josephson junctions [25,26].

Collective synchronization was first studied mathematically by Wiener [27,28], who recognized its ubiquity in the
natural world, and who speculated that it was involved in the generation of alpha rhythms in the brain. Unfortunately
Wiener’s mathematical approach based on Fourier integrals [27] has turned out to be a dead end.

A more fruitful approach was pioneered by Winfree [10] in his first paper, just before he entered graduate
school. He formulated the problem in terms of a huge population of interacting limit-cycle oscillators. As stated,
the problem would be intractable, but Winfree intuitively recognized that simplifications would occur if the cou-
pling were weak and the oscillators nearly identical. Then one can exploit a separation of timescales: on a fast
timescale, the oscillators relax to their limit cycles, and so can be characterized solely by their phases; on a
long timescale, these phases evolve because of the interplay of weak coupling and slight frequency differences
among the oscillators. In a further simplification, Winfree supposed that each oscillator was coupled to the collec-
tive rhythm generated by the whole population, analogous to a mean-field approximation in physics. His model
is

θ̇i = ωi +
 N∑
j=1

X(θj )

Z(θi), i = 1, . . . , N,

whereθi denotes the phase of oscillatori andωi its natural frequency. Each oscillatorj exerts a phase-dependent
influenceX(θj ) on all the others; the corresponding response of oscillatori depends on its phaseθi , through the
sensitivity functionZ(θ i).

Using numerical simulations and analytical approximations, Winfree discovered that such oscillator populations
could exhibit the temporal analog of a phase transition. When the spread of natural frequencies is large compared to
the coupling, the system behaves incoherently, with each oscillator running at its natural frequency. As the spread is
decreased, the incoherence persists until a certain threshold is crossed — then a small cluster of oscillators suddenly
freezes into synchrony.

This cooperative phenomenon apparently made a deep impression on Kuramoto. As he wrote in a paper with his
student Nishikawa ([8], p. 570):
“ . . .Prigogine’s concept of time order [29], which refers to the spontaneous emergence of rhythms in nonequi-
librium open systems, found its finest example in this transition phenomenon. . . It seems that much of fresh
significance beyond physiological relevance could be derived from Winfree’s important finding (in 1967) after
our experience of the great advances in nonlinear dynamics over the last two decades.”
Kuramoto himself began working on collective synchronization in 1975. His first paper on the topic [4] was a

brief note announcing some exact results about what would come to be called the Kuramoto model. In later years, he
would keep wrestling with that analysis, refining and clarifying the presentation each time, but also raising thorny
new questions too [5–9].
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3. Kuramoto model

3.1. Governing equations

Kuramoto [5] put Winfree’s intuition about phase models on a firmer foundation. He used the perturbative method
of averaging to show that for any system of weakly coupled, nearly identical limit-cycle oscillators, the long-term
dynamics are given by phase equations of the following universal form:

θ̇i = ωi +
N∑
j=1

0ij (θj − θi), i = 1, . . . , N.

The interaction functions0ij can be calculated as integrals involving certain terms from the original limit-cycle
model (see Section 5.2 of [5] for details).

Even though the reduction to a phase model represents a tremendous simplification, these equations are still far
too difficult to analyze in general, since the interaction functions could have arbitrarily many Fourier harmonics
and the connection topology is unspecified — the oscillators could be connected in a chain, a ring, a cubic lattice,
a random graph, or any other topology.

Like Winfree, Kuramoto recognized that the mean-field case should be the most tractable. TheKuramoto model
corresponds to the simplest possible case of equally weighted, all-to-all, purely sinusoidal coupling:

0ij (θj − θi) = K

N
sin(θj − θi),

whereK ≥ 0 is the coupling strength and the factor 1/N ensures that the model is well behaved asN→ ∞.
The frequenciesωi are distributed according to some probability densityg(ω). For simplicity, Kuramoto assumed

thatg(ω) is unimodal and symmetric about its mean frequency�, i.e.,g(�+ω) = g(�−ω) for allω, like a Gaussian
distribution. Actually, thanks to the rotational symmetry in the model, we can set the mean frequency to�= 0 by
redefiningθi → θi +�t for all i, which corresponds to going into a rotating frame at frequency�. This leaves the
governing equations

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi), i = 1, . . . , N (3.1)

invariant, but effectively subtracts� from all theωi and therefore shifts the mean ofg(ω) to zero. So from now on,

g(ω) = g(−ω)
for all ω, and theωi denote deviations from the mean frequency�. We also suppose thatg(ω) is nowhere increasing
on [0,∞), in the sense thatg(ω) ≥ g(v) wheneverω≤ v; this formalizes what we mean by “unimodal”.

3.2. Order parameter

To visualize the dynamics of the phases, it is convenient to imagine a swarm of points running around the unit
circle in the complex plane. The complex order parameter [5]

r eiψ = 1

N

N∑
j=1

eiθj (3.2)
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Fig. 1. Geometric interpretation of the order parameter (3.2). The phasesθj are plotted on the unit circle. Their centroid is given by the complex
numberr eiψ , shown as an arrow.

is a macroscopic quantity that can be interpreted as the collective rhythm produced by the whole population. It
corresponds to the centroid of the phases. The radiusr(t) measures the phase coherence, andψ(t) is the average
phase (Fig. 1).

For instance, if all the oscillators move in a single tight clump, we haver ≈ 1 and the population acts like a giant
oscillator. On the other hand, if the oscillators are scattered around the circle, thenr ≈ 0; the individual oscillations
add incoherently and no macroscopic rhythm is produced.

Kuramoto noticed that the governing equation

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi)

can be rewritten neatly in terms of the order parameter, as follows. Multiply both sides of the order parameter
equation by e−iθi to obtain

r ei(ψ−θi ) = 1

N

N∑
j=1

ei(θj−θi ).

Equating imaginary parts yields

r sin(ψ − θi) = 1

N

N∑
j=1

sin(θj − θi).

Thus (3.1) becomes

θ̇i = ωi + Kr sin(ψ − θi), i = 1, . . . , N. (3.3)

In this form, the mean-field character of the model becomes obvious. Each oscillator appears to be uncoupled
from all the others, although of course they are interacting, but only through the mean-field quantitiesr andψ .
Specifically, the phaseθi is pulled toward the mean phaseψ , rather than toward the phase of any individual oscillator.
Moreover, the effective strength of the coupling is proportional to the coherencer. This proportionality sets up a
positive feedback loop between coupling and coherence: as the population becomes more coherent,r grows and so
the effective couplingKr increases, which tends to recruit even more oscillators into the synchronized pack. If the
coherence is further increased by the new recruits, the process will continue; otherwise, it becomes self-limiting.
Winfree [10] was the first to discover this mechanism underlying spontaneous synchronization, but it stands out
especially clearly in the Kuramoto model.
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Fig. 2. Schematic illustration of the typical evolution ofr(t) seen in numerical simulations of the Kuramoto model (3.1).

3.3. Simulations

If we integrate the model numerically, how doesr(t) evolve? For concreteness, suppose we fixg(ω) to be a
Gaussian or some other density with infinite tails, and vary the couplingK. Simulations show that for allK less
than a certain thresholdKc, the oscillators act as if they were uncoupled: the phases become uniformly distributed
around the circle, starting from any initial condition. Thenr(t) decays to a tiny jitter of size O(N−1/2), as expected
for any random scatter ofN points on a circle (Fig. 2).

But whenK exceedsKc, this incoherent statebecomes unstable andr(t) grows exponentially, reflecting the
nucleation of a small cluster of oscillators that are mutually synchronized, thereby generating a collective oscillation.
Eventuallyr(t) saturates at some levelr∞<1, though still with O(N−1/2) fluctuations.

At the level of the individual oscillators, one finds that the population splits into two groups: the oscillators
near the center of the frequency distribution lock together at the mean frequency� and co-rotate with the average
phaseψ(t), while those in the tails run near their natural frequencies and drift relative to the synchronized cluster.
This mixed state is often calledpartially synchronized. With further increases inK, more and more oscillators are
recruited into the synchronized cluster, andr∞ grows as shown in Fig. 3.

The numerics further suggest thatr∞ depends only onK, and not on the initial condition. In other words, it seems
there is a globally attracting state for each value ofK.

3.4. Puzzles

These numerical results cry out for explanation. A good theory should provide formulas for the critical coupling
Kc and for the coherencer∞(K) on the bifurcating branch. The theory should also explain the apparent stability of
the zero branch below threshold and the bifurcating branch above threshold. Ideally, one would like to formulate
and proveglobalstability results, since the numerical simulations give no hint of any other attractors beyond those
seen here. Even more ambitiously, can one formulate and prove some convergence results asN→ ∞?

As we will see below, the first few of these problems have been solved, while the rest remain open. Specifically,
Kuramoto derived exact results forKc and r∞(K), Mirollo and I solved the linear stability problem for the zero

Fig. 3. Dependence of the steady-state coherencer∞ on the coupling strengthK.
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branch, and Crawford extended those results to the weakly nonlinear case. But we still do not know how to show
that the bifurcating branch is linearly stable along its entire length (if it truly is), and nobody has even touched the
problems of global stability and convergence.

4. Kuramoto’s analysis

In his earliest work, Kuramoto analyzed his model without the benefit of simulations — he guessed the correct
long-term behavior of the solutions in the limitN→ ∞, using symmetry considerations and marvelous intuition.
Specifically, he sought steady solutions, wherer(t) is constant andψ(t) rotates uniformly at frequency�. By going
into the rotating frame with frequency� and choosing the origin of this frame correctly, one can setψ ≡ 0 without
loss of generality.

Then the governing equation (3.3) becomes

θ̇i = ωi − Kr sinθi, i = 1, . . . , N. (4.1)

Sincer is assumed constant in (4.1), all the oscillators are effectively independent — that is the beauty of steady
solutions. The strategy now is to solve for the resulting motions of all the oscillators (which will depend onr as
a parameter). These motions in turn imply values forr andψ which must be consistent with the values originally
assumed. Thisself-consistencycondition is the key to the analysis.

The solutions of (4.1) exhibit two types of long-term behavior, depending on the size of |ωi | relative toKr. The
oscillators with |ωi |≤ Kr approach a stable fixed point defined implicitly by

ωi = Kr sinθi, (4.2)

where|θi | ≤ 1
2π . These oscillators will be called “locked” because they are phase-locked at frequency� in the

original frame. In contrast, the oscillators with |ωi | >Kr are “drifting” — they run around the circle in a nonuniform
manner, accelerating near some phases and hesitating at others, with the inherently fastest oscillators continually
lapping the locked oscillators, and the slowest ones being lapped by them. The locked oscillators correspond to the
center ofg(ω) and the drifting oscillators correspond to the tails, as expected.

At this stage, Kuramoto has neatly explained why the population splits into two groups. But before we get too
complacent, notice that the existence of the drifting oscillators would seem to contradict the original assumption
thatr andψ are constant. How can the centroid of the population remain constant with all those drifting oscillators
buzzing around the circle?

Kuramoto deftly avoided this problem by demanding that the drifting oscillators form a stationary distribution on
the circle. Then the centroid stays fixed even though individual oscillators continue to move. Letρ(θ ,ω) dθ denote
the fraction of oscillators with natural frequencyω that lie betweenθ andθ + dθ . Stationarity requires thatρ(θ ,ω)
be inversely proportional to the speed atθ ; oscillators pile up at slow places and thin out at fast places on the circle.
Hence

ρ(θ, ω) = C

|ω − Kr sinθ | . (4.3)

The normalization constantC is determined by
∫ π
−πρ(θ, ω)dθ = 1 for eachω, which yields

C = 1

2π

√
ω2 − (Kr)2.
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Next, we invoke the self-consistency condition: the constant value of the order parameter must be consistent with
that implied by (3.2). Using angular brackets to denote population averages, we have

〈eiθ 〉 = 〈eiθ 〉lock + 〈eiθ 〉drift .

Sinceψ = 0 by assumption,〈eiθ 〉 = r eiψ = r. Thus,

r = 〈eiθ 〉lock + 〈eiθ 〉drift .

We evaluate the locked contribution first. In the locked state, sinθ* =ω/Kr for all |ω|≤ Kr. As N→ ∞, the distri-
bution of locked phases is symmetric aboutθ = 0 becauseg(ω) = g(−ω); there are just as many oscillators atθ* as
at−θ*. Hence〈sinθ〉lock = 0 and

〈eiθ 〉lock = 〈cosθ〉lock =
∫ Kr

−Kr
cosθ(ω)g(ω)dω,

whereθ (ω) is defined implicitly by (4.2). Changing variables fromω to θ yields

〈eiθ 〉lock =
∫ π/2

−π/2
cosθg(Kr sinθ)Kr cosθ dθ = Kr

∫ π/2

−π/2
cos2 θg(Kr sinθ)dθ.

Now, consider the drifting oscillators. They contribute

〈eiθ 〉drift =
∫ π

−π

∫
|ω|>Kr

eiθρ(θ, ω)g(ω)dω dθ.

It turns out that this integral vanishes. This follows fromg(ω) = g(−ω) and the symmetryρ(θ +π ,−ω) = ρ(θ ,ω)
implied by (4.3).

Therefore, the self-consistency condition reduces to

r = Kr
∫ π/2

−π/2
cos2 θg(Kr sinθ)dθ. (4.4)

Eq. (4.4) always has a trivialzero solution r= 0, for any value ofK. This corresponds to a completely incoherent
state withρ(θ ,ω) = 1/2π for all θ ,ω. A second branch of solutions, corresponding to partially synchronized states,
satisfies

1 = K

∫ π/2

−π/2
cos2 θg(Kr sinθ)dθ. (4.5)

This branch bifurcates continuously fromr = 0 at a valueK = Kc obtained by lettingr → 0+ in (4.5). Thus,

Kc = 2

πg(0)
,

which is Kuramoto’s exact formula for the critical coupling at the onset of collective synchronization. By expanding
the integrand in (4.5) in powers ofr, we find that the bifurcation is supercritical ifg′′(0)<0 (the generic case for
smooth, unimodal, even densitiesg(ω)) and it is subcritical ifg′′(0) > 0. Near onset, the amplitude of the bifurcating
branch obeys the square-root scaling law:

r ≈
√

16

πKc
3

√
µ

−g′′(0)
, (4.6)

where

µ = K −Kc

Kc
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is the normalized distance above threshold. For the special case of a Lorentzian or Cauchy density

g(ω) = γ

π(γ 2 + ω2)
, (4.7)

Kuramoto [4,5] integrated (4.5) exactly to obtain

r =
√

1 − Kc

K

for all K ≥ Kc. This formula was later shown to match the results of numerical simulations [6,7].

5. Two unsolved problems

5.1. Finite-N fluctuations

In the last of her three Bowen lectures at Berkeley in 1986, Kopell pointed out that Kuramoto’s argument contained
a few intuitive leaps that were far from obvious — in fact, they began to seem paradoxical the more one thought
about them — and she wondered whether one could prove some theorems that would put the analysis on firmer
footing. In particular, she wanted to redo the analysis rigorously for large but finiteN, and then prove a convergence
result asN→ ∞.

But it would not be easy. Whereas Kuramoto’s approach had relied on the assumption thatr was strictly constant,
Kopell emphasized that nothing like that could be strictly true for any finiteN. Think about the simple caseK = 0.
Thenθ̇i = ωi and every trajectory is dense on theN-torus, at least for the generic case where the frequencies are
rationally independent. But thenr(t) eventually passes through every possible value between 0 and 1, completely
unlike the constant valuer ≡ 0 implied by Kuramoto’s argument! Admittedly,r(t) would spend nearly all its time
very close to zero, atr = O(N−1/2) � 1, and only blip up extremely rarely — in that senser ≡ 0 is practically correct.
But how can this rough idea be made precise? WhenK 6= 0, the situation would become still more difficult, because
now there would bethreesubpopulations of oscillators — locked and drifting ones as in Kuramoto’s analysis, but
also some fuzzy oscillators between them, determined by the ever-fluctuating boundaryωi ≈ Kr(t).

Kopell’s suggestion was to try to prove something like this: For largeN, for most initial conditions, and for
most realizations of theωi , the coherencer(t) approaches the Kuramoto valuer∞(K) and stays within O(N−1/2)
of it for a large fraction of the time. Around the same time, Daido [30–33], and Kuramoto and Nishikawa [8,9]
began exploring the finite-N fluctuations using computer simulations and physical arguments. It appears that the
fluctuations are indeed O(N−1/2) except very close toKc, where they may be amplified [30–33].

Still, the issue of fluctuations remains wide open mathematically. As of March 2000, there are no rigorous
convergence results about the finite-N behavior of the Kuramoto model.

5.2. Stability

The other major issue left unresolved by Kuramoto’s analysis concerns the stability of the steady solutions. It
was in this arena that Crawford ultimately contributed so much, and so we will focus on it for the rest of this paper.
Kuramoto was well aware of the stability problem; he writes [5] (p. 74):
“One may expect that negativeµ (i.e., weaker coupling) makes the zero solution stable, and positiveµ (i.e., stronger
coupling) unstable. Surprisingly enough, this seemingly obvious fact seems difficult to prove. The difficulty here
comes from the fact that an infinitely large number of phase configurations{θi, i = 1, . . . , N} belong to an
identical “macroscopic” state specified by a given value ofr.”
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He also remarks that it “appears to be difficult to prove” that the branch of partially synchronized states is stable
when the bifurcation is supercritical, and unstable when it is subcritical.

6. Stability theories of Kuramoto and Nishikawa

Kuramoto and Nishikawa [8,9] were the first to tackle the stability problem. They proposed two different theories,
both based on plausible physical reasoning, but neither of which ultimately turned out to be correct. Nevertheless,
it is interesting to look back at their pioneering ideas, partly because they came tantalizingly close to the truth, and
partly to remind us how subtle the stability problem appeared at the time.

6.1. First theory

In their first approach, Kuramoto and Nishikawa [8] tried to derive an evolution equation forr(t) in closed form,
a dynamical extension of the earlier self-consistency equation (4.5). The hope was that this might be possible close
to the bifurcation, wherer(t) would be expected to evolve extremely slowly compared to the relaxation time of the
individual oscillators. Then each oscillator would follow the order parameter almost adiabatically, allowing these
rapid variables to be eliminated and causing a great reduction in the dynamics.

To push this strategy through, Kuramoto and Nishikawa [8] made several approximations whose validity was
uncertain. As in the steady-state theory, they separated the population into locked and drifting groups; such a sharp
division should be possible ifr(t) varies slowly enough. The characteristic timescale of the locked oscillators was
argued to be of order (Kr)−1, which is very slow sincer(t) � 1 near the bifurcation. The theory also suggested that
the drifting oscillators make a negligible contribution to the dynamics ofr(t).

In the end, they were led to the following unconventional equation (see Eq. (3.36) in [8]):

ṙ ≈ K

ξs
(µr2 − βr4), (6.1)

whereξ s is an O(1) constant that arises in their theory,µ= (K − Kc)/Kc as before, andβ = − 1
16πKc

3g′′(0). Note
the peculiar extra factor ofr on the right-hand side as compared to the usual normal form near a pitchfork bifurcation.
Eq. (6.1) predicts that the zero solution is stable below threshold (µ<0), but with anomalously slow algebraic decay

r(t) = O(t−1)

ast → ∞. Above threshold, the zero solution is unstable, though weakly so:r(t) initially grows only linearly int,
then eventually relaxes exponentially fast tor∞ = √

µ/β.

6.2. Second theory

Kuramoto and Nishikawa soon realized that something was wrong. Two years later, they revisited the problem [9]
and stated with admirable candor, “In the past, we seem to have held an erroneous view about the onset of collective
oscillation. . . ”. They now believed that the drifting oscillators arenotnegligible throughout the whole evolution of
r(t) — rather, these oscillators play a decisive dynamical role in the earliest stages, thanks to their rapid response to
fluctuations inr(t), though in the long run they still do not affect the steady value ofr.

Kuramoto and Nishikawa [9] also proposed a new strategy for deriving an evolution equation forr(t). In the
governing equation

θ̇i = ωi − Kr(t) sinθi,
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they pretend thatr(t) is an external force, sayh(t), and then derive the responses of the individual oscillators to
h(t), restricting attention to the linear regime whereh(t) � 1. These individual responses (which depend on the
whole history ofh(t)) can then be combined to yield the response ofr(t). On general grounds, and without giving a
derivation, Kuramoto and Nishikawa [9] guessed thatr(t) should be a linear functional ofh(t) of the form

r(t) =
∫ ∞

0
M(τ)h(t − τ)dτ,

whereM is a memory function to be determined. But sinceh is reallyr in disguise, the equation must be

r(t) =
∫ ∞

0
M(τ)r(t − τ)dτ. (6.2)

To calculate the kernelM, they consider the response to a step function

h(t) =
{
h0, t ≤ 0,
0, t > 0,

and find that, for example,M(t) = e−t when the distribution is the Lorentziang(ω) = [π (ω2 + 1)]−1. (The calculation
of M is straightforward. The oscillators are initially distributed according to the stationary densityρ(θ ,ω) found
in Section 4, whereh0 plays the role ofr in the earlier formulas. The densityρ is smooth inθ for the drifting
oscillators and a delta function inθ for the locked oscillators. Then, sinceh(t) = 0 for t > 0, all the oscillators
and their corresponding densities rotate rigidly and independently at their natural frequencies. The corresponding
evolution ofr(t) can be found by integrating eiθ with respect to these rotating densities, weighted byg(ω), and then
M(t) can be extracted from the result.)

Within this revised framework, Kuramoto and Nishikawa [9] now found thatr(t) grows exponentially above
threshold, and decays exponentially below threshold. In other words, the zero solution was now predicted to change
stability in the most standard way — it goes from linearly stable to linearly unstable asK increases throughKc.

But, should one really believe this prediction? Remember, the integral equation (6.2) was not derived in any
systematic way from the governing equation (3.1). On the other hand, the intuitive argument for (6.2) looked
plausible, and maybe even convincing.

7. Continuum limit of the Kuramoto model

It was against this confusing backdrop that Mirollo and I began thinking about the stability problem. At the time,
it was unclear how to formulate the problem mathematically. We did not even know how to write down an infinite-N
version of the Kuramoto model, let alone analyze the stability of its steady solutions.

We eventually realized that the continuum limit should be phrased in terms ofdensities, just as in traffic flow,
kinetic theory, or fluid mechanics [34]. For each natural frequencyω, imagine a continuum of oscillators distributed
on the circle. Letρ(θ , t,ω) dθ denote the fraction of these oscillators that lie betweenθ andθ + dθ at timet. Then
ρ is nonnegative, 2π -periodic inθ , and satisfies the normalization∫ 2π

0
ρ(θ, t, ω)dθ = 1 (7.1)

for all t andω. The evolution ofρ is governed by the continuity equation

∂ρ

∂t
= − ∂

∂θ
(ρv) (7.2)
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which expresses conservation of oscillators of frequencyω. Here the velocityv(θ , t,ω) is interpreted in an Eulerian
sense as the instantaneous velocity of an oscillator at positionθ , given that it has natural frequencyω. From (3.3),
that velocity is

v(θ, t, ω) = ω + Kr sin(ψ − θ), (7.3)

wherer(t) andψ(t) are now given by

r eiψ =
∫ 2π

0

∫ ∞

−∞
eiθρ(θ, t, ω)g(ω)dω dθ, (7.4)

which follows from the law of large numbers applied to (3.2). Equivalently, these equations can be combined to
yield a single equation forρ in closed form:

∂ρ

∂t
= − ∂

∂θ

[
ρ

(
ω +K

∫ 2π

0

∫ ∞

−∞
sin(θ ′ − θ)ρ(θ ′, t, ω′)g(ω′)dω′ dθ ′

)]
. (7.5)

The expression in parentheses isv(θ , t,ω), written as the infinite-N version of (3.1).
Eq. (7.5) is the continuum limit of the Kuramoto model [34]. It is a nonlinear partial integro-differential equation

for ρ. The virtue of (7.5) is that all questions about existence, stability, and bifurcation of various kinds of solutions
can now be addressed systematically.

For instance, the stationary states of (7.5) are precisely the steady solutions that Kuramoto [4,5] wrote down
intuitively. To see this, note that∂ρ/∂t = 0 impliesρv= C(ω), whereC(ω) is constant with respect toθ . If C(ω) 6= 0,
we recover the stationary density (4.3) for the drifting oscillators; ifC(ω) = 0, we find thatρ is a delta function in
θ , based at the locked phase found earlier.

The simplest state is the uniformincoherent state

ρ0(θ, ω) ≡ 1

2π
,

or what we earlier called the zero solution. As we will see in Section 8, its linear stability properties turn out to be
stranger than anyone had expected.

Eqs. (7.2)–(7.5) had been studied previously by Sakaguchi [35], who extended the Kuramoto model to allow
rapid stochastic fluctuations in the natural frequencies. The governing equations are

θ̇i = ωi + ξi + K

N

N∑
j=1

sin(θj − θi), i = 1, . . . , N, (7.6)

where the variablesξ i(t) are independent white noise processes that satisfy

〈ξi(t)〉 = 0, 〈ξi(s)ξj (t)〉 = 2Dδij δ(s − t).

HereD ≥ 0 is the noise strength and the angular brackets denote an average over realizations of the noise. Sakaguchi
argued intuitively that since (7.6) is a system of Langevin equations with mean-field coupling, asN→ ∞ the density
ρ(θ , t,ω) should satisfy the Fokker–Planck equation

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ
(ρv), (7.7)

wherev(θ , t,ω), r(t), andψ(t) are given by (7.3) and (7.4). Thus Sakaguchi’s Fokker–Planck equation reduces to
the continuum limit of the Kuramoto model whenD = 0.
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However, Sakaguchi [35] did not present a stability analysis of his model. Instead he solved for the station-
ary densities, and then extended Kuramoto’s self-consistency argument to determine where a branch of partially
synchronized states bifurcates from the incoherent state. In this way he showed that the critical coupling is

Kc = 2

[∫ ∞

−∞
D

D2 + ω2
g(ω)dω

]−1

, (7.8)

which reduces to Kuramoto’s formulaKc = 2/πg(0) asD → 0+.

8. Stability of the incoherent state

The linear stability problem for the incoherent state of Sakaguchi’s model was solved in [34]. Here is an outline
of the approach and the results (for consistency with the rest of this paper, we will restrict attention to the Kuramoto
model, whereD = 0). Let

ρ(θ, t, ω) = 1

2π
+ εη(θ, t, ω), (8.1)

whereε� 1 and we write the perturbationη as a Fourier series inθ :

η(θ, t, ω) = c(t, ω)eiθ + c.c.+η⊥(θ, t, ω). (8.2)

Here c.c. denotes complex conjugate, andη⊥ contains the second and higher harmonics ofη. (Note thatη automat-
ically has zero mean, because of (7.1).) We write the perturbation in this way because it turns out that the linearized
amplitude equation for the first harmonic,c(t,ω), is the only one with nontrivial dynamics; that’s essentially because
of the pure sinusoidal coupling in the Kuramoto model. Substituting forρ into (7.5) yields

∂c

∂t
= −iωc + K

2

∫ ∞

−∞
c(t, ω′)g(ω′)dω′. (8.3)

The right-hand side of (8.3) defines a linear operatorA, given by

Ac ≡ −iωc + K

2

∫ ∞

−∞
c(t, ω′)g(ω′)dω′. (8.4)

The spectrum ofA has both continuous and discrete parts, as shown in [34]. Its continuous spectrum is pure imag-
inary,{iω: ω∈support(g)}, corresponding to a continuous family ofneutralmodes. These modes can be understood
intuitively by imagining an initial perturbationη(θ ,ω, t = 0) supported on a sliver of exactly one frequency, say
ω=ω0. In other words, we disturb the slice of the oscillator population with intrinsic frequencyω0 and leave the rest
alone in their perfectly incoherent state. The corresponding amplitudec(0,ω) would then take the formc(0,ω) = 0
for all ω 6=ω0 (oscillators at those frequencies are not disturbed). As forω=ω0, we can choosec(0,ω0) = 1 with-
out loss of generality, since (8.4) is linear. The key point is that the integral in (8.4) vanishes for this strange sliver
perturbation, and so (8.4) reduces toAc= iω0c. Hence,c(0,ω) is (morally speaking) an eigenfunction with pure
imaginary eigenvalue iω0, and that explains the form of the continuous spectrum. Of course, this argument is not
strictly correct, because this sliver perturbation is equivalent inL2 to the zero perturbation, and so is not a valid
eigenmode. But the intuition is right, and it agrees with the rigorous calculations given in [34].

To find the discrete spectrum ofA, let

c(t, ω) = b(ω)eλt .
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Then

λb = −iωb + K

2

∫ ∞

−∞
b(ω′)g(ω′)dω′. (8.5)

The integral is just a constant to be determined self-consistently. Thus, let

B = K

2

∫ ∞

−∞
b(ω′)g(ω′)dω′. (8.6)

Solving (8.5) forb yields

b(ω) = B

λ+ iω
.

Substituting thisb back into (8.5) gives the characteristic equation

1 = K

2

∫ ∞

−∞
g(ω)dω

λ+ iω
. (8.7)

Now suppose thatg(ω) is even and nowhere increasing on [0,∞), in the sense thatg(ω) ≥ g(v) wheneverω≤ v;
this is the case originally considered by Kuramoto. Then one can prove that (8.7) has at most one solution forλ,
and if it exists, it is real [36]. Hence (8.7) becomes

1 = K

2

∫ ∞

−∞
λ

λ2 + ω2
g(ω)dω. (8.8)

Eq. (8.8) shows that any eigenvalue must satisfyλ≥ 0, since otherwise the right-hand side of (8.8) is negative.
Hence there can never be any negative eigenvalues!

So our analysis has yielded a surprise: the incoherent state of the Kuramoto model can never be linearly stable
— it is either unstable or neutrally stable.

To find the borderline couplingKc between these two cases, consider the limitλ→ 0+ in (8.8). Thenλ/(λ2 +ω2)
becomes more and more sharply peaked aboutω= 0, yet its integral over−∞<ω<∞ remains equal toπ . Hence
λ/(λ2 +ω2) →πδ(ω), and so (8.8) tends to

1 = 1
2Kcπg(0),

which gives a new derivation of theKc found by Kuramoto [4,5].
Eq. (8.8) also provides explicit formulas for the growth rateλ, if g(ω) is a sufficiently simple density. For instance,

the uniform densityg(ω) = 1/2γ with −γ ≤ω≤ γ gives

λ = γ cot

(
2γ

K

)
(8.9)

and the Lorentzian density (4.7) gives

λ = 1
2K − γ. (8.10)

These eigenvalues match the growth rates seen in numerical simulations forK > Kc [34].
In summary, the linearization about the incoherent state of the Kuramoto model has a purely imaginary continuous

spectrum forK<Kc, and the discrete spectrum is empty. AsK increases, a real eigenvalueλ emerges from the
continuous spectrum and moves into the right half plane forK > Kc (Fig. 4).

These results confirm Kuramoto’s conjecture [5] that the incoherent state becomes unstable whenK > Kc. But
the shocker is that incoherence is linearly neutrally stable for allK<Kc.
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Fig. 4. Spectrum of the linear operator (8.4) that governs the linear stability of the incoherent stateρ0 ≡ 1/2π . (a) ForK > Kc, the incoherent state
is unstable, thanks to the discrete eigenvalueλ> 0. This eigenvalue pops out of the continuous spectrum atK = Kc. (b) ForK ≤ Kc, the discrete
spectrum is empty and the incoherent state is neutrally stable.

9. Landau damping

Mirollo and I were novices at continuous spectra, and we were bewildered by its effects on the discrete spectrum.
We expected that asK decreases throughKc, the eigenvalueλ should move toward the continuous spectrum, collide
with it, then pop out the back. But it did not — it just disappeared. Where did it go? Another weird thing was that
explicit formulas forλ like (8.9) and (8.10) look perfectly innocuous forK<Kc. They give no hint thatλ is doomed;
they simply predict, incorrectly, thatλ goes negative.

Matthews, then an applied math instructor at MIT, became interested in this issue and we all began working on it
together. The mystery deepened when Matthews ran some simulations forK<Kc that seemed to show exponential
decay of the coherencer(t) — and the decay rate was exactly the negativeλ predicted by the formulas, in the regime
where they were not supposed to hold. Spooky!

9.1. The long-sought integral equation

But mayber(t) could decay exponentially even ifη(θ , t,ω) does not? We needed to find an equation governing
the evolution ofr(t). Recall that this is what Kuramoto and Nishikawa [8,9] had been searching for too, as discussed
in Section 6. Fortunately it was now possible to derive such an equation systematically, as follows [37]. Eqs. (8.1),
(8.2) and (7.4) yield

r(t) = 2πε

∣∣∣∣∫ ∞

−∞
c(t, ω)g(ω)dω

∣∣∣∣ . (9.1)

Notice that the integral in (9.1) also appears in the linearized amplitude equation (8.4). Since (9.1) reveals an intimate
relationship between that integral andr(t), let us introduce the notation

R(t) =
∫ ∞

−∞
c(t, ω)g(ω)dω. (9.2)

Eq. (8.3) is a first-order linear ordinary differential equation forc(t,ω), and hence is easily solved in terms ofR(t)
and the initial conditionc0(ω) ≡ c(0,ω). Inserting the result forc(t,ω) into (9.2) gives the linear integral equation

R(t) = (ĉ0g)(t)+ K

2

∫ t

0
R(t − τ)ĝ(τ )dτ, (9.3)
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where the hat denotes Fourier transform:

ĝ(t) =
∫ ∞

−∞
g(ω)e−iωt dω.

The structure of (9.3) is reminiscent of (6.2), the equation guessed by Kuramoto and Nishikawa [9], withĝ playing the
role of their memory functionM. In particular,ĝ(t) = e−t when the density is the Lorentziang(ω) = [π (ω2 + 1)]−1,
in agreement with their finding thatM(t) = e−t in this case. The main differences are that (9.3) is an equation forR,
not r, and (9.3) includes a variable upper limit of integration and thec0g term.

To solve (9.3), use Laplace transforms and then apply the inversion formula to obtain the integral representation

R(t) = 1

2π i

∫
0

(c0g)
∗(s)

1 − 1
2Kg∗(s)

est ds. (9.4)

Here the contour0 is a vertical line to the right of any singularities of the integrand, and the asterisk denotes an
operation related to the Hilbert transform:

f ∗(s) ≡
∫ ∞

−∞
f (ω)dω

s + iω
.

From (8.7), we see that the denominator in (9.4) vanishes precisely whens is in the discrete spectrum ofA. Hence
for K<Kc, the denominatornevervanishes.

Some explicit solutions of (9.4) are possible. For the extremely special initial conditionc0(ω) ≡ 1, the exact
solution is

R(t) = exp
[(

1
2K − γ

)
t
]
, t ≥ 0,

whenĝ(t) = e−|γ t |, corresponding to a Lorentziang(ω). So exponential decay ofR(t), and hencer(t), is possible
for K<Kc = 2γ , even though the incoherent stateρ0 is neutrally stable! On the other hand, for the uniform density
g(ω) = 1/2γ on [−γ ,γ ], asymptotic analysis of the inversion integral (9.4) gives the much slower decay

R(t) ∼
(−16γ

K2

)
sinγ t

t ln2t
as t → ∞

for K<Kc.
More generally, Matthews, Mirollo, and I found that forK<Kc, the asymptotic behavior ofR(t) depends crucially

on whetherg(ω) is supported on a finite interval [−γ ,γ ] or the whole real line (these are the only possibilities,
by our hypotheses thatg is even and nowhere increasing forω > 0). For the case of compact support, we proved
thatR(t) → 0 ast → ∞, but the decay is always slower than exponential at long times, in agreement with numerics
[37]. If g(ω) is supported on the whole line, the asymptotic behavior ofR(t) can be much wilder: anyR(t) ∈ L2

can be contrived by an appropriate choice ofc0 ∈ L2. But in the best-behaved case whereg(ω) andc0(ω) are entire
functions,R(t) is merely a sum of decaying exponentials.

Finally, the integral representation (9.4) allowed us to understand the exponential decay that Matthews had seen
at intermediate times in his simulations. The decay is caused by a pole in the left half plane — a pole not of the
integrand but of itsanalytic continuation(as required for the validity of the usual contour manipulations). This pole
coincides with the eigenvalueλ in the right half plane, but not in the left!

9.2. A lesson from Rowlands

In February 1991, Matthews gave a lecture at Warwick where he described the various bizarre features of our
stability problem: the continuous spectrum on the imaginary axis; the disappearance of the unstable eigenvalue
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into the continuous spectrum at threshold; the need for tricky analytic continuation arguments; the fact that the
macroscopic variabler can decay exponentially even though the density perturbationη does not.

Rowlands was in the audience, and he told Matthews that something just like this had been seen before in plasma
physics, where it is called “Landau damping”. For the next several months, we devoured whatever we could find on
the subject, and soon realized that Landau damping was a fascinating, confusing story in its own right, starting with
brilliant but not entirely rigorous work by Landau in 1946, followed by two decades worth of controversy [38–46].

Rowlands was right. There definitely was a link between Landau damping and the relaxation phenomena we were
seeing. It was awe-inspiring: the same mathematics describes the violent world of plasmas and the silent, hypnotic
pulsing of fireflies perched along a riverbank.

We spent a few months trying to get the mathematical story straight, and gradually we began writing a paper on
what we had found. But before it was done, I took a few days off to attend Dynamics Days in Austin, in January
1992.

10. A lunch with Crawford

As usual at Dynamics Days, there was a big table in the hall where people had left piles of reprints. A paper
caught my eye: “Amplitude equations on unstable manifolds: singular behavior from neutral modes”, by Crawford
[47].

Whoa — neutral modes! Heart beating fast, I skimmed the abstract and there it was: “The Vlasov equation for a
collisionless plasma is the second model; in this case there are an infinite number of neutral modes corresponding
to the van Kampen continuous spectrum”. Yep, that confirms it. He’s thinking about the same kind of things that
we are. I had heard of Crawford and I knew that he was supposed to be a brilliant young guy and a great applied
mathematician. Apparently he knows a lot about plasmas and continuous spectra — maybe he can clarify some
things about Landau damping and tell me if our ideas about the Kuramoto model seem right.

So I asked around, and it seemed everybody but me knew who Crawford was. Mary Silber, Emily Stone, and
Kurt Wiesenfeld all tried to describe him to me, but we could not find him anywhere.

Eventually our paths crossed. I was struck by his combination of seriousness and pleasantness. He seemed
different from the rest of the gang, maybe more reserved, maybe just better manners? Anyway, I told him what I
had hoped to discuss, and he seemed to like the idea, so we wandered off to have lunch together and ended up at a
hamburger joint somewhere, a dark woody place, perfect for thinking about math.

I told him about the crazy behavior of the unstable eigenvalue and how it got absorbed by the continuous spectrum
on the imaginary axis, but before I could get very far, he gave me a reassuring nod. He seemed to know the whole
story without me telling him. Yes, all these things were familiar and standard in the context of collisionless plasmas
[38–48]. Not only that, he explained, but similar phenomena occur in many other parts of science, in connection
with instabilities of ideal shear flows [49–51], solitary waves [52,53], bubbly fluids [54], and resonance poles in
atomic systems [55]. Wow — I wastalking to the right guy.

He went on to explain some of his own work. He was trying to write amplitude equations for a weakly unstable
mode in a Vlasov plasma, but the difficulty was that the coefficients in those equations becomesingularas the un-
stable eigenvalue approaches the neutral continuous spectrum, reflecting unusually strong nonlinear effects [47,48].
Whereas normally the saturated amplitude of the bifurcating mode grows like

√
σ (whereσ = Reλ is the linear

growth rate), in these situations the nonlinear interactions lead to a much smaller amplitude (O(σ 2), in the Vlasov
case).

Hold on, I said. In the Kuramoto model, we can find the amplitude of the bifurcating mode exactly, and we do
see the usual square-root scaling; that follows from (4.6) and the fact thatσ ∼ K − Kc near threshold. That got
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Crawford’s attention. I showed him Kuramoto’s classic analysis (Section 4) and yes, he agreed, something different
seemed to be going on here. For some reason, the Kuramoto model was not showing signs of the singularities
that afflicted the Vlasov problem. Crawford realized that this could be an instructive case. If he could derive the
amplitude equations for the Kuramoto model, they should not turn out to be singular — and maybe that would shed
some light on the plasma problem, as well as giving more general insight into the effects of the neutral continuum
on the scaling of unstable modes.

That is how Crawford got started on the Kuramoto model.

11. Crawford’s work on coupled oscillators

Crawford’s first paper on coupled oscillators [1] contains the decisive step. He showed how to approach the
local stability analysis of the Kuramoto model in a systematic way, using the tools of center manifold theory and
equivariant bifurcation theory.

At the time, Crawford developed this approach almost in passing. What really grabbed his attention was a paper
by Bonilla et al. [56] that had just appeared. Those authors were the first to attempt a nonlinear stability analysis
of the Kuramoto model, and they noticed that Hopf bifurcations became possible if the frequency distributiong(ω)
were allowed to be bimodal. But when Crawford saw their analysis, he instantly felt that something was amiss. It
seemed to him that Bonilla et al. had unfortunately omitted half of the unstable eigenvectors that would generically
be forced by the O(2) symmetry of the system. He wondered whether some nonlinear traveling and standing wave
solutions had been overlooked. That turned out to be the case. So part of Crawford’s paper [1] is devoted to a careful
re-analysis of the dynamics for bimodalg(ω).

More significantly, Crawford presented the first derivation and analysis of the amplitude equations for both
steady-state and Hopf bifurcations from the incoherent stateρ0(θ ,ω) ≡ 1/2π . He worked with Sakaguchi’s gener-
alization of the Kuramoto model:

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ

[
ρ

(
ω +K

∫ 2π

0

∫ ∞

−∞
sin(θ ′ − θ)ρ(θ ′, t, ω′)g(ω′)dω′ dθ ′

)]
, (11.1)

where the densityg(ω) is assumed to be even, as before, but is no longer restricted to be unimodal.
With noise strengthD > 0, the continuous spectrum lies safely in the left half plane, so center manifold reduction

can be applied. Crawford exploits the system’s O(2) symmetry to constrain the form of the center manifold and the
vector field on it, yet the calculation is still daunting. Eventually he arrives at an equation ([1], Eq. (108)), that, in
our notation, is equivalent to

ṙ = λr + ar3 + O(r5).

Recall from Section 6 that Kuramoto and Nishikawa [8] had been looking for an amplitude equation like this.
Crawford finally found it. In Eq. (138) of [1], he works out the value of the coefficienta and confirms that as
D → 0+, it agrees with the value found by Kuramoto’s self-consistency approach. The amplitude equation also
strongly suggests that the bifurcating branch is locally stable, at least at onset. Still, it is not a proof, as Crawford
notes: “However, whenD = 0, center manifold theory no longer justifies our reduction to two dimensions; the
qualitative agreement atD = 0 between numerical simulations [6] and our amplitude equation may be fortuitous”.

There is one other important result in that first paper. Just as Crawford had suspected at our lunch in Austin,
the coefficients in the amplitude equation do indeed remain finite asD → 0+, in striking contrast to the singular
behavior that occurs in the corresponding expansions for the Vlasov plasma problem. In both problems, the unstable
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modes correspond to an eigenvalue emerging from a neutral continuous spectrum at onset. So why are the amplitude
equations singular in one case and not in the other?

An intriguing clue was provided by the work of Daido [57–60]. He investigated what happens when the sinusoidal
coupling in the Kuramoto model is replaced by a general periodic function

f (φ) =
∞∑

n=−∞
fn einφ.

As before, the system exhibits incoherence for sufficiently small coupling, then bifurcates to a partially synchronized
state as the coupling is increased past a critical value. So at first glance the generalized model seems to show nothing
qualitatively new.

But upon closer inspection, it turns out that one aspect of the model — its scaling behavior near threshold — is
altered in an essential way. Following Kuramoto’s original calculation, Daido sought steady solutions and studied
their bifurcations by imposing a self-consistency condition. He generalized Kuramoto’s order parameter (which is
tailored to sinusoidal coupling) by extending it to an “order function”H. Using a suitable norm ofH to measure the
amplitude of the bifurcating solution, Daido showed that

‖H‖ ∼ (K −Kc)
β,

where the scaling exponentβ = 1 generically. That was a big surprise — the obvious guess was thatβ = 1
2,

the square-root scaling familiar from pitchfork and Hopf bifurcations and most mean-field models, including the
original Kuramoto model.

Crawford loved this result, because it meant that something singular must be happening in the amplitude equations.
Time for another monstrous center manifold reduction! That is the topic of Crawford’s next two papers [2,3].
Replacing the sine function in (11.1) with a generalf yields

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ

[
ρ

(
ω +K

∫ 2π

0

∫ ∞

−∞
f (θ ′ − θ)ρ(θ ′, t, ω′)g(ω′)dω′ dθ ′

)]
.

This evolution equation always has SO(2) symmetry. Iff is odd andg is even, as in the original Kuramoto model,
the symmetry is O(2).

In [2], Crawford computed the amplitude equations through third order and verified that they could become
singular, depending on the harmonic content off. His main result is that the saturated amplitude of an unstable mode
eilθ with mode numberl typically scales like

|α∞| ∼
√
σ(σ + l2D), (11.2)

whereσ is the linear growth rate andD the noise strength. The unusual factorσ + l2D arises from a singularity in
the amplitude equation; it is generic in the sense that it occurs for any coupling functionf (φ) with

f2l 6= 0.

To clarify this result, let us see why the original Kuramoto model gives no hint of the generic scaling (11.2). As
discussed in Section 8, thel = 1 harmonic of the perturbationη(θ , t,ω) is the only one that can go unstable; that is
why it was sufficient to concentrate on the dynamics of its amplitudec(t,ω) and ignore the evolution of the higher
harmonics inη. However, we see now that the square-root scaling (4.6) found in that case is nongeneric, because
f(φ) = sinφ and hencef2 = 0; the Kuramoto model has no second harmonic in the coupling.

For D = 0, (11.2) generically yields the scaling exponentβ = 1 found earlier by Daido [59], but Crawford’s
analysis goes further by including stability information and the effects of noise. For instance, whenD > 0, (11.2)
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shows that the scaling |α∞|∼ σ crosses over to the traditional result|α∞| ∼ √
σ sufficiently close to onset (σ → 0+),

or when the noise becomes sufficiently strong.
The recent paper by Crawford and Davies [3] is an even deeper exploration of these issues. Now the singularity

structure of the amplitude equations is calculated toall orders, but all the earlier conclusions still hold. This paper
also contains a rigorous derivation of Sakaguchi’s equation (7.7), starting from a Fokker–Planck equation for the
coupled Langevin equation (7.6) on theN-torus and taking the limitN→ ∞.

In summary, Crawford made several important contributions to the analysis of the Kuramoto model, including:
1. The first systematic formulation of the weakly nonlinear stability problem for the incoherent state, using center

manifold theory and equivariant bifurcation theory [1].
2. The first derivation of an evolution equation forr(t), in the neighborhood of the incoherent state [1].
3. The first proof that the bifurcating branch of partially synchronized states is locally stable, near the synchroniza-

tion threshold and in the presence of weak noise [1].
4. The first exploration of the effects of the neutral continuous spectrum on the scaling of unstable modes [1], using

ideas that he had developed earlier in his work on the Vlasov model of collisionless plasmas [47,48], thereby
forging a link between these two previously separate fields.

5. The discovery that the amplitude equations for the Kuramoto model are nonsingular, in contrast to those for the
Vlasov model, and the explanation of this difference: the Kuramoto model has nongeneric singularity structure
due to the lack of a second harmonic in the coupling function [2,3].

6. The first study of the singularity structure of the amplitude equations for a generalized Kuramoto model in which
all harmonics are included [2,3].
Contributions 1–3 cracked some problems that had resisted solution for about two decades. Contributions 4–6

opened up a completely new line of inquiry, with implications not only for oscillator synchronization, but also for
plasma physics, fluid mechanics, kinetic theory, and other fields where instabilities are created by unstable modes
emerging from a continuous spectrum.

12. Epilog

The last time I saw Crawford was in spring 1998, at the Pattern Formation meeting at the Institute for Mathematics
and its Applications. It was his first conference after many bouts of chemotherapy, and although he was a little weak,
he was all smiles and his manner was as gracious as ever. We enjoyed some fun times together that week, especially
during a dinner with Mirollo. Over pizza and a few beers, the three of us discussed the linear stability problem for the
entire branch of partially synchronized states in the Kuramoto model. It is still unsolved, 25 years after Kuramoto
first posed it, but we thought we had some ideas about how to proceed, and we hoped to collaborate on it after the
conference. With Crawford on our team, I bet we could have done it.
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